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Abstract

With very large graph data becoming commonplace across
many fields, sampling is often needed to reduce the graphs
into practical sizes. This procedure raises critical questions
about representativeness as a sample cannot capture the prop-
erties of the original graph perfectly, and different parts of
the graph are not equally affected by the loss. Recent work
has shown that the distance between other nodes to the sam-
pled nodes can be a quantitative indicator of bias and fair-
ness issues in graph machine learning contexts. In this paper,
we present a systematic analysis of popular node sampling
methods on different types of synthetic graphs and real-world
graphs from the perspective of shortest-path distances to the
sample. Additionally, we propose a theoretical framework for
estimating the distribution of shortest-path distances to the
sample. We examine how the choice of sampling method and
graph configuration affects the distribution of the shortest-
path distances and demonstrate the accuracy of our theoret-
ical framework. This study makes an early step towards un-
derstanding the behavior of graph sampling methods.

Introduction
Graph sampling is commonly used in a variety of fields that
are concerned with large scale graph data (e.g., the Web
graph or a real-world social network). In many cases, work-
ing with such a full graph or even knowing the full graph
is infeasible, and one has to effectively reduce the size of
the graph (often through sampling the nodes) so that sophis-
ticated data science methods can be practically deployed.
For example, Web crawlers travel the graph of Web pages
to model the Internet [3], epidemiologists sample a popula-
tion to model the spread of diseases [6], and biologists sam-
ple cell interactions to understand behavior of cellular net-
works [1]. Sampling can also be used to simplify complex
graph structures that would otherwise be difficult to work
with [16]. In particular, when dealing with large social net-
works, sampling reduces the size and structural complexity
of the graph and allows for easier analysis [31].

However, graph sampling is not as simple as randomly se-
lecting nodes (though this can be a valid approach). An ideal
sample would be tailored to the research question at hand,
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and it should avoid any unwanted bias. For example, sam-
pling hard-to-reach communities poses unique challenges in
that those who are successfully sampled may not be repre-
sentative of the larger population [25]. In addition, samples
would ideally retain relevant properties of the original graph,
which is not always straightforward to generate [28]. Care-
less sampling is also prone to unwanted bias [21], especially
in more complex graphs where the importance of nodes is
not necessarily equal [29]. Carefully choosing a sampling
method can help address these representation concerns.

We aim to better understand the representativeness of
graph sampling methods from the perspective of the distri-
bution of shortest-path distances (DSPD) from nodes to a
sample. The DSPD provides valuable insights into how well
the sample covers the graph, a measure of representative-
ness known as network reach [21]. Additionally, in graph
neural networks [27], distance from sample has been shown
to be an indicator of fairness [20], as the machine learning
models perform better on nodes closer to the labeled nodes
than on those further away. When dealing with hard-to-reach
communities, models perform worse on those nodes fur-
ther away from the sample [11]. However, determining the
DSPD is difficult: the naive method of performing sampling
then empirically calculating the shortest-path distances can
be computationally expensive.

This paper provides, to our knowledge, the first systematic
study of the impact of sampling methods on the DSPD as
well as a framework for theoretically estimating the DSPD
to a sample. We demonstrate the effectiveness of our method
through comparison against empirically calculated distribu-
tions on synthetic graphs. In particular, we show that our
method is able to accurately make predictions about which
of two sampling methods would yield a shortest-path dis-
tance distribution that more heavily favors smaller distances.
Additionally, we verify the differences we find between sam-
pling methods on real-world graphs.

Related Work
Graph Sampling
Graph sampling is a common technique used in cases where
working with a full graph is impractical or impossible. These
cases can arise when collecting data from the full network or
working with the full network is computationally infeasible,



or in social science contexts when working with a hard-to-
reach communities, to name a few. Maiya and Berger-Wolf
[21] discusses how well a sample covers a graph through
network reach, measuring it through discovery quotient,
which is the proportion of nodes that are in the sample or is a
neighbor of a sample. However, we examine a more general
idea via the full distribution of distances.

Hu and Lau [13] conduct a survey of graph sampling tech-
niques and provide ad hoc analysis of the impacts of the
sampling techniques. Costenbader and Valente [7] look at
the stability of centrality metrics under sampling, including
the centrality metrics we use for centrality-based sampling
(degree and betweenness). Stumpf, Wiuf, and May [28] con-
clude that the scale-free property of a graph would not be
preserved under random sampling. These studies all look at
whether certain properties of the original graph would be
preserved by the sampled graph. This paper instead exam-
ines the representativeness of nodes in a sample using the
DSPD of other nodes to that sample. This property is not in-
trinsic to the original graph, but depends on both the graph
and the sample, and therefore is not something to be pre-
served “before and after” sampling.

Shortest Path Distance
Classical network science literature measures the average
of shortest path distances in a graph and uses it to catego-
rize networks [32]. A few existing studies look at the DSPD
beyond the mean, including Katzav, Biham, and Hartmann
[14], Ventrella, Piro, and Grieco [30], and Katzav et al. [15].
Katzav, Biham, and Hartmann [14] obtain an analytical ex-
pression for the DSPD between nodes in subcritical Erdös-
Rényi graphs, while Katzav et al. [15] do so for Erdös-Rényi
graphs in general. Ventrella, Piro, and Grieco [30] propose
models that can be used to find the distribution for scale-free
networks. These studies do not consider network sampling
and only investigate the properties of the full graph. As such,
the distributions investigated are sample independent, which
is not what we track.

Ma, Deng, and Mei [20] find that the distance of an un-
labeled node to the subgroup of labeled nodes in a graph is
a good indicator of the performance of a graph neural net-
work on that node, which motivates our investigation of the
DSPD. However, their work does not conduct analysis of the
effect of sampling methods.

This paper measures the DSPD to a given sample of nodes
such that we are only interested in the distances of nodes
outside a selected sample to any node within that sample.

Methodology
We conduct a systematic investigation of the DSPD from
nodes to samples by various sampling techniques in vari-
ous types of graphs. We use common graph generating tech-
niques to obtain synthetic graphs, and examine some real
world graphs. For each graph, we apply common sampling
techniques, examine the resulting distribution, and compare
against the distribution predicted by our theoretical frame-
work.

Overview of Sampling Methods
Random Sampling Random sampling is a straightfor-
ward way to sample from a graph. To generate a sample of
size n, we select n nodes from the graph uniformly at ran-
dom, without replacement.

Snowball Sampling Snowball sampling [8] is a form of
traversal-based sampling commonly used in sociology when
sampling on hard-to-reach communities [13], where random
sampling is not feasible. In snowball sampling, we begin
with a seed sample, then produce a frontier of all nodes ad-
jacent to the seed. At each step, a node in the frontier is
removed from the frontier and added to the sample with a
certain probability. If the node is added, it is removed from
the frontier and the frontier is expanded with that node’s
neighbors. This simulates the process of using referrals to
find new subjects, which may be necessary if the popula-
tion being sampled is stigmatized and standard surveys are
ineffective.

Centrality-Based Sampling Methods We also investi-
gate centrality-based sampling methods. These methods se-
lect high-centrality nodes into the sample, which are consid-
ered nodes with high importance/influence [26].

For example, degree centrality sampling takes the n nodes
with largest degree as the sample. Degree sampling is often
used as a metric for importance in a network, so selecting
high degree nodes for a sample is a potential way to se-
lect the most important/influential nodes for predictions. [5]
found that in social networks, a small sample of high de-
gree users disseminating true information could effectively
counteract false information.

Betweenness centrality [4] sampling takes the n nodes
with largest betweenness metric. Betweenness of a node v
is measured as the sum of the fraction of all shortest paths
between s and t that pass through v, for all s and t. A larger
value again indicates a more central node. Similar to other
centrality measures, this can be used as a metric of impor-
tance, as [19] did to examine interdisciplinarity of scientific
journals.

Overview of Graphs
We applied the aforementioned sampling methods on both
synthetic and real world graphs for our study. Synthetic
graphs can be obtained more easily than real world graphs,
and the regularity of their degree distributions makes it sim-
pler to apply our theoretical framework. However, they may
not always be able to capture all the intricacies of real
world networks. To better compare between synthetic and
real-world graphs, we examine synthetic graphs with and
without community structures. All synthetic graphs were of
size n = 2000. We examined three graph generation tech-
niques: binomial graphs, power-law graphs [2], and Stochas-
tic Block Model (SBM) graphs [12].

Binomial Graphs Binomial graphs are graphs with n
nodes, where every edge has a chance of being in the graph,
independent of every other edge. For a given probability p,
the expected number of edges is then

(
n
2

)
p. We generated



binomial graphs with n = 2000 nodes and p = 0.005 prob-
ability of an edge. These graphs are simple and intuitive to
analyze compared to other types of graphs.

Power-Law Graphs The power-law model is a way to
generate scale free graphs, where the degree distribution of
nodes follows a power law distribution. Denoting the proba-
bility of a node having degree k as p(k), p(k) = akγ where
γ is a parameter chosen and a is a normalizing constant.
Minimums and maximums can be enforced on the support of
p. We generated two types of power-law graphs. Both were
of size n = 2000, with γ = −2.5; one had a support of
3 ≤ k ≤ 29 and the other had a support of 13 ≤ k ≤ 37.
We will refer to the first configuration as Power Law A and
the second configuration as Power Law B. These configu-
rations were chosen as they lead to different relative results
between sampling methods. Many social networks are scale
free, making power-law graphs a potentially good way to
replicate real world graphs.

Stochastic Block Model The Stochastic Block Model
(SBM) is another way to generate graphs resembling real
world social networks. The graph is split into blocks with
each edge within a block appearing with probability p1 and
each edge across two blocks appearing with probability p2.
We generated SBM graphs with 4 blocks of 500 nodes. The
inside-block edge probability was 0.02 while the outside-
block edge probability was 0.002. Unlike the power-law
model, these graphs aim to replicate the community struc-
ture, where there are multiple communities that are highly
connected within themselves, with sparse connections be-
tween communities.

We are able to carefully control the properties of syn-
thetic graphs, allowing us to more easily make conclusions;
finding enough real-world graphs that satisfy the properties
we need to be able to make strong conclusions would be
prohibitively difficult. We take advantage of this fact when
choosing the two configurations of the power law graphs.
Additionally, the diversity of synthetic graphs, mimicking
different types of real world graphs, allows us to generalize
results seen in synthetic graphs.

Real World Graphs We examined four real world graphs
from the Stanford Network Analysis Project (SNAP) [17].
These were the Facebook Large Page-Page Network
dataset [24], and the California, Texas, and Pennsylvania
Road Networks [18].

The Facebook graph contains 22,470 nodes representing
official pages on Facebook, with 171,002 undirected edges
representing mutual likes between pages.

In the road network graphs, nodes represent intersections
between and endpoints of roads, with undirected edges rep-
resenting the road segments connecting these intersections
or endpoints. The networks were very large, with Califor-
nia’s graph having nearly 2 million nodes and nearly 3 mil-
lion edges, Texas’s graph having around 1.3 million nodes
and nearly 2 million edges, and Pennsylvania’s graph hav-
ing just over 1 million edges and around 1.5 million edges.
To reduce the size of the graphs for easier analysis, we took
a connected subgraph of 50,000 nodes, generated by ran-

domly picking a root point, and adding recursive adding all
neighbors of nodes already selected until we reached 50,000
nodes. This process was repeated 10 times, each time start-
ing with a different random node.

Theoretical Framework
Next, we present a framework to theoretically examine the
DSPD resulting from different sampling methods on differ-
ent graphs.

Preliminaries
As preliminaries, we begin with a simpler question: the
DSPD to a single random node in a graph, the single node
DSPD problem. In this setting, this is equivalent to deter-
mining the DSPD in the entire graph. Nitzan et al. [23] de-
rive such a distribution analytically for configuration model
graphs [22], where the distribution of the degrees of nodes
is specified. For example, a binomial graph with n nodes
and probability p may be viewed as a configuration model
graph where the distribution of degrees follows a binomial
distribution B(n− 1, p).

Intuitively, the distribution is obtained by looking at
“shells” around a single node recursively. The probability
that the shortest path distance between two random points is
greater than ℓ can be calculated recursively: for the shortest-
path distance between nodes i and j to be greater than ℓ, the
shortest-path distance between any neighbor of i and j must
be greater than ℓ− 1. If the probability that the distance be-
tween any two nodes is greater than ℓ − 1 is known, then
by accounting for the distribution of the number of neigh-
bors of i, the probability that the distance between any i
and j is greater than ℓ can be determined. An additional
complication is that the degree distribution of a randomly
selected node is different from the degree distribution of a
node known to have a neighbor, and this is resolved by main-
taining two recursive equations.

Specifically, for graphs with N nodes,

P (d > ℓ) = P (d > 0)

ℓ∏
ℓ′=1

mN,ℓ′ ,

where P (d > ℓ) is the probability of a pair of nodes i, j
having shortest-path distance greater than ℓ, and mN,ℓ is de-
fined as, in a graph with N nodes, P (d > ℓ|d > ℓ− 1).

First,

mN,ℓ =

N−2∑
k=1

p(k)(m̃N−1,ℓ−1)
k,

where p(k) is the degree distribution and m̃N−1,ℓ−1 is the
probability that for a pair of nodes i and j, node r a neighbor
of i, in a graph of size N − 1 (i.e., excluding i), the shortest-
path distance from r to j is greater than ℓ given that the
distance is greater than ℓ− 1.

Next,

m̃N,ℓ =

N−2∑
k=1

k

c
p(k)(m̃N−1,ℓ−1)

k−1,



where c =
∑∞

k=1 kp(k) is a normalizing constant. Here
the distribution k

c p(k) is used as the degree distribution of
i’s neighbor r is not drawn from p(k): the probability of a
node being a neighbor of i is proportional to its degree. The
exponent is k − 1 as one of r’s neighbors is i.

The base cases are

mN,1 =

N−1∑
k=1

p(k)

(
1− 1

N − 1

)k

,

and

m̃N,1 =

N−1∑
k=1

k

c
p(k)

(
1− 1

N − 1

)k−1

.

Multi-Node Sample Framework
This analysis of the DSPD to a collection of sampled nodes
is considerably more challenging than the single node DSPD
problem presented above. Simply sampling multiple dis-
tances from the single node DSPD does not suffice as the
distances are not independent. Additionally, our framework
must account for sample nodes not selected randomly, while
the single node DSPD framework requires the source node
to be selected randomly.

We now describe how we overcame these challenges. We
retain the idea of looking at shells centered around a single
node, except the center of the shell is a supernode consisting
of all the nodes in the sample contracted into one. More for-
mally, let an (undirected) graph be G = (V,E), where V is
the set of nodes and E ⊆ V ×V is the set of edges. Denote a
set of sample nodes as S ⊆ V , all the edges of G involving a
node in S as ES ⊆ E. Let N := {v ∈ V \ S | (u, v) ∈ E},
which is the set of neighbors of nodes in S that are outside S.
Then the graph (which we call a contracted graph) after con-
tracting the sample S into a supernode uS is G′ = (V ′, E′),
where

V ′ := V \ S ∪ {uS}, E′ := E \ ES ∪ {(uS , v) | v ∈ N}).
We then need to adjust the formula for mN,ℓ. In particular,

instead of the degree distribution p(k) in the original graph
G, we draw from the degree distribution of the supernode
uS in the contracted graph G′, denoted as pS(k). Thus,

P (d > ℓ) = P (d > 0)

ℓ∏
ℓ′=1

mN,ℓ′ ,

as before. However, the recursions are now

mN,ℓ =

N−2∑
k=1

pS(k)(m̃N−1,ℓ−1)
k,

and

m̃N,ℓ =

N−2∑
k=1

k

c
p(k)(m̃N−1,ℓ−1)

k−1.

The base cases are

mN,1 =

N−1∑
k=1

pS(k)

(
1− 1

N − 1

)k

,

and

m̃N,1 =

N−1∑
k=1

k

c
p(k)

(
1− 1

N − 1

)k−1

.

Note that pS is affected by both the structure of the orig-
inal graph G and the sampling method used to draw S. In
the following sections we discuss how the sampling meth-
ods and graph structures we use affect this distribution.

Sampling Methods
Random Sampling To determine the degree distribution
of the sample supernode for a random sample of size n, we
need to determine the distribution of a sum of n independent
random variables drawn from the single node degree distri-
bution. Assuming p(k) is the probability of a single node
having degree k in the original graph G, then the degree dis-
tribution of the supernode uS in the contracted graph G′ is

pS(k) =
∑

∑N−1
i=0 ni=n∑N−1
i=0 ini=k

(
n

n1, n2, · · · , nN−1

)N−1∏
i=0

p(i)ni .

This estimation is accurate under the assumption that
there are no edges between nodes in the sample, i.e. that all
degrees counted lead to a node not in the sample. In cases
where the sample size is small compared to the overall size
of the graph, this assumption generally holds. Additionally,
we may zero-out highly unlikely single-node degrees (i.e.,
round p(i) to 0) to reduce computation expense. Not only
does this avoid calculating terms that will not influence the
final distribution much, this also allows us to calculate pS
using polynomial multiplication: representing p as a poly-
nomial q(x) where the coefficient of xi is p(i), q(x)n is a
polynomial where the coefficient of xi is pS(i).

Snowball Sampling To estimate the degree distribution of
the sample supernode, pS , under snowball sampling, similar
to the method for random sampling, we still determine the
distribution of a sum of random variables. However, these
random variables are drawn from the single node degree dis-
tribution, p, weighted by the degree. This represents the fact
that the probability of a node being selected via the snowball
process is proportional to the degree of that node. However,
we also apply a correction of −2n for a sample of size n,
representing the fact that a sample of size n will have about
n edges between nodes in the sample.

Recall that p(k) is the probability of a single node hav-
ing degree k in the original graph G. Assuming c =∑N−1

i=0 ip(i) and a sample S has size n, then the degree dis-
tribution of the supernode uS in the contracted graph G′ is

pS(k) =∑
∑N−1

i=0 ni=n∑N−1
i=0 ini=k+2n

(
n

n1, n2, · · · , nN−1

)N−1∏
i=0

(
ip(i)

c

)ni

.



As with random sampling, this estimation is accurate un-
der the assumption that there are no edges between nodes
in the sample, other than the edges traversed during the
snowball process. Similarly, we may zero-out highly un-
likely single-node degrees and use polynomial multiplica-
tion to reduce computation cost. Representing the normal-
ized weighted p as a polynomial q(x) where the coefficient
of xi is ip(i)

c , q(x)n is a polynomial where the coefficient of
xi is pS(i− 2n).

An additional assumption this estimation makes is that the
number of seed nodes is small: seed nodes would have their
degree distribution come from p(k), not ip(i)

c . In general,
this assumption holds: many more nodes are added via the
snowball process in comparison to seed nodes.

Centrality-Based Sampling Methods Determining the
degree distribution of nodes sampled with centrality based
methods appears challenging due in large part to the diffi-
culty in estimating the degree distribution of the nodes se-
lected. In this paper, we only examine these methods empir-
ically and leave theoretical analysis to future work.

Graphs
Here we discuss the degree distribution p(k) for the syn-
thetic graphs described earlier. For binomial graphs, the de-
gree distribution of a single node simply follows a binomial
distribution: for a graph with n nodes and probability of an
edge p, p(k) =

(
n
k

)
pk(1 − p)n−k. Power-law graphs are

generated according to p(k) = ak−γ , with the normalizing
constant a described earlier.

However, applying our framework to SBM graphs is more
difficult than binomial or power-law graphs as our original
framework is built off of the configuration model, which
treats all edges and nodes equally: when moving from one
shell to the next, every edge leads to a new node with iden-
tical degree distribution. This is no longer true for SBM
graphs due to the block structure. We discuss how we over-
come this challenge below.

Stochastic Block Model Graphs Recall that a critical ob-
servation for our framework is that the degree distribution
of a node which is a neighbor of another node is not the
same as the degree distribution of a random node; neigh-
bors are more likely to have large degree. However, for SBM
graphs, there are two degree distributions we must consider:
the inside-block degree distribution and the outside-block
degree distribution. We thus must consider whether a neigh-
bor is within the same block or across blocks. For example,
if a node is known to be a neighbor via a inside-block edge,
then we would expect its inside-block degree distribution to
be different from that of a randomly selected node, but its
outside-block degree distribution would be the same. Sim-
ilarly, if a node is known to be a neighbor via an outside-
block edge, then we would expect its outside-block degree
distribution to be different from that of a randomly selected
node, but its inside-block degree distribution would be the
same.

To account for this, we must modify the recursive formu-
las. For an SBM graph G, denote the pi as the inside-edge

degree distribution and po as the outside-edge degree distri-
bution.

As before,

P (d > ℓ) = P (d > 0)

ℓ∏
ℓ′=1

mN,ℓ′ .

However, now

mN,ℓ =
∑

ki+ko<N−1

psi(ki)pso(ko)·

(
m̃i

N−1,ℓ−1

)ki
(
m̃o

N−1,ℓ−1

)ko
,

where psi is the sample supernode degree distribution for
inside-block edges in G′, pso is the sample supernode de-
gree distribution for outside-block edges in G′, m̃i

N−1,ℓ−1

is the probability that a node in the next shell reached via an
inside-block edge is greater than ℓ away from the node given
that it is greater than ℓ− 1 away, and m̃o

N−1,ℓ−1 is the prob-
ability that a node in the next shell reached via an outside-
block edge is greater than ℓ away from the node given that it
is greater than ℓ−1 away. The recursions for m̃i and m̃o are

m̃i
N,ℓ =

∑
ki+ko<N−1

kipi(ki)

ci
po(ko)·

(
m̃i

N−1,ℓ−1

)ki−1 (
m̃o

N−1,ℓ−1

)ko
,

m̃o
N,ℓ =

∑
ki+ko<N−1

pi(ki)
kopo(ko)

co
·

(
m̃i

N−1,ℓ−1

)ki
(
m̃o

N−1,ℓ−1

)ko−1
,

with ci and co being
∑

0<k<N−1 kpi(k) and∑
0<k<N−1 kpio(k), the normalizing constants after

weighting pi and po by the degree. Depending on whether
the node in the next shell was arrived at via an inside-block
edge or outside-block edge, the degree distribution for the
matching class of edge is drawn from the weighted degree
distribution rather than the unweighted degree distribution.
The base cases are then

mN,1 =
∑

ki+ko<N

psi(ki)pso(ko)

(
1− 1

N − 1

)ki+ko

,

m̃i
N,1 =

∑
ki+ko<N

kipi(ki)

ci
po(ko)

(
1− 1

N − 1

)ki+ko−1

,

m̃o
N,1 =

∑
ki+ko<N

pi(ki)
kopo(ko)

co

(
1− 1

N − 1

)ki+ko−1

.

Determining psi and pso under random sampling is
straightforward: we need only apply the random sampling
process for other graph types to pi and po separately. It is
more difficult to determine the distributions for snowball
sampling as we must consider the distribution of the type of
edges the snowball process takes. The first step is to deter-
mine the probability that a randomly selected node reached



during the snowball process was arrived at via an inside-
block edge. Denote this probability p. We may solve for p:

P (node via inside-edge)
= P (node via inside-edge |parent node via inside-edge)
P (parent node via inside-edge)

+ P (node via inside-edge |parent node via outside-edge)
P (parent node via outside-edge),

with the observation that P (parent node via inside-edge) =
p and P (parent node via outside-edge) = 1 − p. To deter-
mine the conditional probabilities, we have

P (node via inside-edge | parent node via inside-edge) =∑
0<ki<N−1

∑
0<ko<N−1

kipi(ki)

ci
po(ko)

ki − 1

ki + ko − 1
,

P (node via inside-edge | parent node via outside-edge) =∑
0<ki<N−1

∑
0<ko<N−1

pi(ki)
kopo(ko)

co

ki
ki + ko − 1

,

from which we may solve for p.
Next, to determine the distribution of the number of

inside/outside-block neighbors of the supernode, we need
to account for those inside/outside-block neighbors that are
part of the snowball process. For example, for a sample size
of s of which si are reached via inside-block edges, the
distribution of the number of effective inside-block neigh-
bors is the distribution of a sum of values drawn from kipi

ci
si times (as si of the nodes were reached via an inside-
block edge) and pi s − si times (as the remaining nodes
were reached via an outside-block edge), minus 2i (to re-
move those edges which are inside the sample as part of the
snowball process). Efficiently calculate this using the same
polynomial multiplication idea as before: let the distribu-
tion pi be represented by q(x) and the normalized weighted
pi be represented by r(x). Then for each si we calculate
usi(x) = q(x)sir(x)s−si/x2si .

Finally, over all possible values of si, we take a sum of
the resulting distributions, weighted by

(
s
si

)
psi (1 − p)s−si .

The resulting distribution approximates the distribution for
the number of inside-block neighbors of the sample. Con-
tinuing the polynomial multiplication method from the
previous paragraph, we obtain the final polynomial of∑

0<si<s

(
s
si

)
psi (1−p)s−siusi(x) A similar process is done

for outside-block neighbors.
One important assumption is that the degree distribution

of a node in the sample is not seriously affected by condi-
tioning on the number of inside-block edges in the sample.
This assumption is what allows us to first fix the number
of inside-block edges then determine the distribution of the
number of inside-block neighbors through a simple sum of
existing distributions.

This general idea for snowball sampling in SBM graphs
is similar to snowball sampling in binomial and power law
graphs, in that we first sum up the degrees over all nodes,
then apply a correction for snowball process edges. The dif-
ference here is that the correction is not the same for all cases

but rather depends on the snowball process itself, which ne-
cessitates the second assumption above.

The Mean Effective Sample Node Degree
By applying our theoretical framework to generate estimated
DSPDs we can predict differences in the DSPD from differ-
ent sampling methods. Additionally, a heuristic which can
be used is the mean effective sample node degree. This met-
ric is defined as the mean degree contribution towards the
degree of the sample supernode in G′ by a single node in
the sample. For random sampling, this is simply the mean
degree of a node. For snowball sampling, this is the mean
degree of the weighted degree distribution minus 2. A larger
mean effective sample node degree indicates that the DSPD
will have a lower mean distance.

We note that the process of calculating the heuristic
is slightly more involved for snowball sampling on SBM
graphs. We take the average of the effective degree of a node
reached via an inside-block edge and of a node reached via
an out-side block edge, weighing by the probability of reach-
ing via an inside/outside-block edge.

Computational Complexity
Computing our theoretical framework is significantly faster
than empirically calculating the DSPD. The complexity of
empirically calculating the DSPD involves graph search al-
gorithms on the full graph. Our framework’s complexity is
only dependent on the size of the support of p, the sample
size s, and the maximum distance to recurse to. Additionally,
our recursions can be implemented using vectorized opera-
tions for further efficiency.

Experimental Study
Study Design
As we mentioned earlier in the Introduction section, the
shortest-path distances from nodes to the sample have been
shown as a good quantitative indicator of the representa-
tiveness of the sample. In this study, we examined both the
shape of the shortest-path-distance distribution as well as
the mean shortest-path distance when comparing sampling
methods. In terms of the distribution shape, a more heavily
right-skewed distribution would indicate that there are fewer
nodes that are far from the sample, indicating that the sam-
ple is “fairer”. In terms of the mean shortest-path distance, a
smaller mean distance indicates that the sample does a good
job of “covering” all of the nodes.

We conducted experiments on the synthetic graphs pre-
sented in the previous section using random sampling and
snowball sampling, with the aim of comparing the sampling
methods as well as verifying the accuracy of our theoretical
framework.

In obtaining empirical distributions, as the sampling
methods and graph generation process includes randomness,
we had multiple instances of graph/sample combinations as
we would generate multiple graphs and/or sample multiple
times. For each type of synthetic graph, we generated 10
graphs; for each sampling method, we repeat the sampling
10 times on each generated graph. Thus we would have 100



(a) Rand. s = 20 (b) SB. s = 20

(c) Rand. s = 100 (d) SB s = 100

Figure 1: Comparison of sampling methods on binomial
graphs, sample size s. Rand. = random sampling, SB =
snowball sampling.

trials of the experiments (sampling 10 times on each of the
10 graphs). For each trial, we could obtain a histogram dis-
tribution of the shortest-path distances, and we took the av-
erage on the histogram distributions of all the trials as the
final experiment results for the graph/sample combination.

Applying the theoretical framework, meanwhile, was a
one step process: with knowledge of the degree distribution
of a node in the graph and the sampling method, one pass
through the recursive formulas was sufficient.

Experiments on Synthetic Graphs
We conduct experiments on synthetic graphs to examine the
effect of sampling methods, as well as verify the accuracy of
our theoretical framework.

Comparing Between Sampling Methods Depending on
the configuration of the graph, random sampling or snowball
sampling could perform better. From Figure 1, in binomial
graphs, the DSPDs for random sampling and snowball sam-
pling are similar in shape. However, random sampling gives
a lower mean distance than snowball sampling: at s = 20,
random sampling has a mean distance of 2.237 with snow-
ball sampling at 2.280, at s = 100 random sampling has a
mean distance of 1.541 with snowball sampling at 1.576.

Similarly, from Figure 2 and Figure 3, we see that both
Power Law A and Power Law B graphs have very similar
distributions for random sampling and snowball sampling.
However, for Power Law A graphs snowball sampling gives
consistently lower mean distances: at s = 20, random sam-
pling has a mean distance of 2.684 while snowball sampling
has a mean distance of 2.627, at s = 100 random sampling
has a mean distance of 1.863 while snowball sampling has
a mean distance of 1.824; while for Power Law B graphs
random sampling gives consistently lower mean distances:
at s = 20, random sampling has a mean distance of 1.833
while snowball sampling has a mean distance of 1.836, at
s = 100 random sampling has a mean distance of 1.315

(a) Rand. s = 20 (b) SB. s = 20

(c) Rand. s = 100 (d) SB s = 100

Figure 2: Comparison of sampling methods on Power Law
A graphs, sample size s. Rand. = random sampling, SB =
snowball sampling.

while snowball sampling has a mean distance of 1.320.
From Figure 4, we see that for SBM graphs, the shape dif-

ferences between random sampling and snowball sampling
are more noticeable. Here random sampling consistently has
both a noticeably lighter right tail and a smaller mean dis-
tance. For completeness, we report the exact mean distances:
at s = 20, random sampling has a mean distance of 2.049
while snowball sampling has a mean distance of 2.145, at
s = 100 random sampling has a mean distance of 1.507
while snowball sampling has a mean distance of 1.448.

In summary, on graphs without community structure
the DSPDs for random sampling and snowball sampling
were very similar, while on graphs with community struc-
ture there was a more noticeable difference. One sampling
method is also not consistently better than the other; rather
the comparison depends on the graph configuration, and
sampling size does not affect this comparison.

Accuracy of Theoretical Framework Figure 5 and Fig-
ure 6 demonstrate that there is good agreement between the
distributions predicted by our theoretical framework and the
empirically observed distributions for all types of synthetic
graphs. For all graphs, the predicted distributions match well
with the empirical distributions in terms of both shape and
center. Examining the exact densities, the predicted densities
are more accurate for shorter distances, with discrepancies
becoming more apparent at larger distances. These discrep-
ancies could be due to the approximations used by applying
our framework. Slight errors introduced by our assumptions
can accumulate through the recursive calculations.

Our mean effective sample node degree heuristic is accu-
rate as well. For example, for Power Law A graphs, the ef-
fective mean degree of random sampling is calculated to be
5.55, while the effective mean degree of snowball sampling
is calculated to be 6.64, and we do see snowball sampling
have a lower mean distance. For Power Law B graphs the ef-
fective mean degree of random sampling is calculated to be



(a) Rand. s = 20 (b) SB. s = 20

(c) Rand. s = 100 (d) SB s = 100

Figure 3: Comparison of sampling methods on Power Law
B graphs, sample size s. Rand. = random sampling, SB =
snowball sampling.

19.47, while the effective mean degree of snowball sampling
is calculated to be 19.36, and we do see snowball sampling
have a lower mean distance.

For SBM graphs the heuristic is less effective due to the
community structures involved, but does work in the exam-
ple we examined: the effective mean degree of random sam-
pling is calculated to be 12.78, while the effective mean de-
gree of snowball sampling is calculated to be 11.60, and we
do see random sampling give a lower mean distance.

Experiments on Real-world Graphs
Though synthetic graphs are commonly used in the network
science literature to understand the behavior of algorithms
and natural graphs, it is still necessary to verify that they
serve as good proxies for real world graphs with respect to
DSPDs. We therefore run similar experiments on real world
graphs and compare the results with synthetic graphs. The
experiment results on the Facebook graph with varying sam-
ple sizes are visualized in Figure 7, and the results on three
different road networks are visualized in Figure 8.

Comparing Sampling Methods For all the real world
graphs, we saw clear differences between the DSPDs for
all sampling methods. Between random sampling and snow-
ball sampling, random sampling produced distributions that
had both lower mean distances and a lighter right tail. This
difference was not observed in the synthetic binomial and
power-law graphs, where both the theoretical distributions
and the empirical distributions exhibited little difference be-
tween random sampling and snowball sampling. There were
small differences that could be predicted by our theoretical
framework, but not to the scale observed in these real world
graphs.

On the other hand, such differences were noticeable in
SBM graphs. We are not able to obtain an exact comparison
with the real world graphs as the communities in the real
world graphs are not of equal size, but SBM graphs do ex-

(a) Rand. s = 20 (b) SB. s = 20

(c) Rand. s = 100 (d) SB s = 100

Figure 4: Comparison of sampling methods on SBM graphs,
sample size s. Rand. = random sampling, SB = snowball
sampling.

hibit the trend of random sampling producing distributions
with lower mean distances and lighter right tails. This indi-
cates that the community structure is important to DSPDs, as
binomial and power-law graphs lack the community struc-
ture of SBM and real world graphs. Additionally, the pat-
terns predicted by our theoretical framework and verified by
experimentation on synthetic graphs are preserved when ex-
amining similar real world graphs.

Examination of the centrality based sampling methods in-
dicates that there is much nuance to explore. In the case of
the Facebook graph, we see that the centrality based sam-
pling methods all have a lower mean distance than random
sampling. However, the opposite is true for the road net-
work graphs. This points to the added complexity of cen-
trality based sampling methods being worthwhile in some,
but not all, circumstances. Here, centrality based sampling
methods likely perform better in the Facebook graph due
to the higher degrees of nodes compared to the road net-
works, where there are physical limitations on the number
of roads that can join at an intersection. Moreover, there are
differences in the shapes of the DSPDs between between-
ness based sampling and degree based sampling.

In summary, we find that the trends observed in the real
world graphs are most consistent with the trends observed
in the synthetic SBM graphs, and that graph type affects the
relative effectiveness of centrality based sampling methods.

Discussion and Conclusion
Finally, we conclude this paper with further discussions of
our theoretical framework and implications of our compari-
son between synthetic and real world graphs.

Theoretical framework. Our theoretical framework has
been shown to be very accurate on graphs without commu-
nity structure, e.g. binomial graphs and power-law graphs.
On graphs with a community structure, it is necessary to



(a) Binomial Pred. (b) Binomial Emp.

(c) Power Law A Pred. (d) Power Law A Emp.

(e) Power Law B Pred. (f) Power Law B Emp.

(g) SBM Pred. (h) SBM Emp.

Figure 5: Comparison of predicted (Pred.) and actual (Emp.)
distributions. Distributions from random sampling size s =
20 on respective graphs.

make the recursive formulas more fine-grained to achieve
the same level of accuracy. Additionally, the heuristic we
propose is effective at predicting the comparison between
sampling methods given a model configuration. However,
for both the framework and the heuristic, adjustments were
needed to account for the community structure in SBM
graphs with identical blocks. Further research is needed to
adapt our framework to graphs with more complex commu-
nity structures.

Future work deriving the degree distribution of samples
generated via other sampling methods would expand the ap-
plicability of our framework. We present methods for ran-
dom sampling and snowball sampling, but other sampling
methods like centrality based sampling are also commonly
used. For these methods, it difficult to determine the degree
distribution of a single node in the sample and to estimate
the correction needed due to edges within the sample. There
would be much value in investigating these sampling meth-
ods, as in some cases they outperform random sampling and
snowball sampling.

(a) Binomial Pred. (b) Binomial Emp.

(c) Power Law A Pred. (d) Power Law A Emp.

(e) Power Law B Pred. (f) Power Law B Emp.

(g) SBM Pred. (h) SBM Emp.

Figure 6: Comparison of predicted (Pred.) and actual (Emp.)
distributions. Distributions from snowball sampling size s =
20 on respective graphs.

Influence of graph properties. Through the experiments
on synthetic graphs, we have shown that the types of graphs
have a major influence on the DSPD to the sample. This sug-
gests that we need to pay attention to the choice of graph
generation models when investigating the representativeness
of graph sampling methods using synthetic graphs. Com-
paring the results on synthetic graphs and those on real
world graphs, SBM graphs are closer to those of real world
graphs than binomial or power law graphs. In the case of
binomial graphs, we believe this is because the synthetic
graphs are too dense (O(n2) edges) compared to real-world
graphs, resulting in very short shortest-distances. In the case
of power law graphs, we believe this is because the gen-
eration method results in fewer high-centrality nodes than
the real-world graphs, and that the high-centrality nodes are
more closely connected than in real-world cases. This again
results in shorter shortest-path distances than those in real
world graphs. The community structure in social networks
or the planar property of road networks are important fac-
tors to be considered.
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(a) Rand. s = 10
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(b) Rand. s = 400
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(c) Rand. s = 2000
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(d) SB s = 10
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(e) SB s = 400
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(f) SB s = 2000
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(g) Deg. s = 10
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(h) Deg. s = 400
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(i) Deg. s = 2000
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(j) Bet. s = 10
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(k) Bet. s = 400
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(l) Bet. s = 2000

Figure 7: Comparison of different sampling sizes and sam-
pling methods on the Facebook graph. Rand. = random sam-
pling, SB = snowball sampling, Deg. = degree based sam-
pling, Bet. = betweenness based sampling.

Ethical considerations. This paper investigates the repre-
sentativeness of graph sampling methods through the lens
of shortest-path distances. We believe this is an important
problem with considerable ethical impacts on many social
science studies. However, we note that the desired represen-
tative properties is very application dependent. Our study of
the shortest-path distances is motivated by results on bias
and fairness in a graph machine learning context. Those us-
ing our work should verify that shortest-path distances are
similarly important in their context. Nevertheless, we hope
that this study can help attract more attention to the prob-
lem of the representativeness of graph sampling methods in
general.

References
[1] Aittokallio, T.; and Schwikowski, B. 2006. Graph-

based methods for analysing networks in cell biology.
Briefings in bioinformatics 7(3): 243–255.

[2] Barabási, A.-L.; and Albert, R. 1999. Emergence of
scaling in random networks. science 286(5439): 509–
512.

[3] Boldi, P.; Santini, M.; and Vigna, S. 2004. Do your
worst to make the best: Paradoxical effects in pagerank
incremental computations. In International Workshop

0 20 40 60 80 100
Distance to Sample

0.000
0.025
0.050
0.075
0.100
0.125
0.150
0.175
0.200

Fr
ac

tio
n 

of
 N

od
es

(a) CA Rand.

0 20 40 60 80 100
Distance to Sample

0.000
0.025
0.050
0.075
0.100
0.125
0.150
0.175
0.200

Fr
ac

tio
n 

of
 N

od
es

(b) PA Rand.

0 20 40 60 80 100
Distance to Sample

0.000
0.025
0.050
0.075
0.100
0.125
0.150
0.175
0.200

Fr
ac

tio
n 

of
 N

od
es

(c) TX Rand.

0 20 40 60 80 100
Distance to Sample

0.000
0.025
0.050
0.075
0.100
0.125
0.150
0.175
0.200

Fr
ac

tio
n 

of
 N

od
es

(d) CA SB

0 20 40 60 80 100
Distance to Sample

0.000
0.025
0.050
0.075
0.100
0.125
0.150
0.175
0.200

Fr
ac

tio
n 

of
 N

od
es

(e) PA SB

0 20 40 60 80 100
Distance to Sample

0.000
0.025
0.050
0.075
0.100
0.125
0.150
0.175
0.200

Fr
ac

tio
n 

of
 N

od
es

(f) TX SB

0 20 40 60 80 100
Distance to Sample

0.000
0.025
0.050
0.075
0.100
0.125
0.150
0.175
0.200

Fr
ac

tio
n 

of
 N

od
es

(g) CA Deg.

0 20 40 60 80 100
Distance to Sample

0.000
0.025
0.050
0.075
0.100
0.125
0.150
0.175
0.200

Fr
ac

tio
n 

of
 N

od
es

(h) PA Deg.

0 20 40 60 80 100
Distance to Sample

0.000
0.025
0.050
0.075
0.100
0.125
0.150
0.175
0.200

Fr
ac

tio
n 

of
 N

od
es

(i) TX Deg.

0 20 40 60 80 100
Distance to Sample

0.000
0.025
0.050
0.075
0.100
0.125
0.150
0.175
0.200

Fr
ac

tio
n 

of
 N

od
es

(j) CA Bet.

0 20 40 60 80 100
Distance to Sample

0.000
0.025
0.050
0.075
0.100
0.125
0.150
0.175
0.200

Fr
ac

tio
n 

of
 N

od
es

(k) PA Bet.

0 20 40 60 80 100
Distance to Sample

0.000
0.025
0.050
0.075
0.100
0.125
0.150
0.175
0.200

Fr
ac

tio
n 

of
 N

od
es

(l) TX Bet.

Figure 8: Comparison of sampling methods on Road Net-
work graphs. Sample size = 1000. CA = California, PA =
Pennsylvania, TX = Texas. Rand. = random sampling, SB
= snowball sampling, Deg. = degree based sampling, Bet. =
betweenness based sampling.
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